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ABSTRACT

The restoration of images focused on a photosensitive surface

is treated from the standpoint of maximum-likelihood estimation,

taking into account the Poisson distributions of the observed data,

which are the numbers of photoelectrons from various elements of

the surface. A detector of an image focused on such a surface

utilizes a certain linear combination of those numbers as the

optimum detection statistic. Methods for calculating the false-

alarm and detection probabilities are proposed. It is shown that

measuring noncommuting observables in an ideal quantum receiver cannot

yield a lower Bayes cost than that attainable by a system measuring

only commuting observables._ I
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Restoration of Images on Photosensitive Surfaces

Methods for restoring images degraded by an optical system or by passage

of the image-forming light through a turbulent medium often are based on a

linear model of the optical process, in which the noise is independent of the

desired image and combines with it additively. In these models it is necessary

to postulate the statistical properties of the noise, which is usually assumed

Gaussian, and to leave such parameters as its mean-square amplitude and its

bandwidth to be measured separately. Such a treatment is incapable of deter-

mining the fundamental limitations on restoring degraded images.

Essaying to take into account the physical nature of the light and the

statistical properties of the recording process, we have analyzed an imaging

system in which the light from the object plane is focused on a photosensitive

surface, from which it ejects photoelectrons. The surface is divided like a

mosaic into a large number of small, insulated spots, from each of which the

photocurrent can be measured. These measured values of the photocurrent con-

stitute the data on which is to be based an estimate of the radiance of the

object plane, which corresponds to the "true image". The numbers of photo-

electrons emitted from the spots have Poisson distributions whose mean values

are proportional to the instantaneous illuminance, which is the absolute square

of the sum of the light fields created by object and background. These fields

are spatio-temporal Gaussian random processes. The observed photocurrents

are combined linearly to produce estimates of the object radiance,and the

optimum linear combination determines the minimum mean-square error attainable

by the restored image.

In a paper, "Linear Restoration of Incoherently Radiating Objects",

attached to this report, it is shown that the formula for the minimum mean-

square error has the same form as that obtained in Wiener filtering theory,
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but with the noise terms specified by the physical properties of the light

fields and of the photosensitive surface. In particular, it is shown that

under normal circumstances the shot noise arising from the stochastic nature

of the photoelectron emissions far exceeds the noise associated with the

random fluctuations of the object and background light fields. Image degrada-

tion by diffraction at the aperture and by passage of the object light through

a random phase screen, representing a turbulent medium, are both analyzed.

As the shot noise predominates in causing random variations of the

observed data, our knowledge of its properties can be made the basis of a

technique for restoring images recorded by means of such a photosensitive

mosaic. In developing the method, we describe the illuminance I(x) at point

x of the image plane as the convolution of a true or geometrical image J(x)

with an incoherent point-spread function (psf),

I(x) = jK(X Y) J(y) d2 y. (1)

The psf will be assumed normalized so that

K(x) d2 x = 1. (2)

All integrals are carried out over the image plane, which will be taken finite

for computational purposes. It is J(x) that we wish to estimate.

The image plane is a photosensitive surface divided like a mosaic into a

large number of small spots of area s, which emit photoelectrons when the light

impinges on them. The product WT of the bandwidth W of the incident light and

the observation time T is supposed to be so large, WT >> 1, that the numbers ni

of photoelectrons from the spots are independent random variables with Poisson

distributions. The mean value of ni is given by

E(ni) = a s I(xi), (3)
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where xi is the center of the i-th spot and a is a constant proportional to

the quantum efficiency of the surface and to the observation time and inversely

proportional to the quantum hv of light energy. (More generally, a I(x) and

a J(x) are averages over the spectrum of the incident light, weighted by

n(v)/hv, where n(v) is the quantum efficiency at frequency v, the spectrum

being assumed independent of x.)

Let Io = JO be the uniform illuminance of the image plane in the absence

of a scene; we then put

J(x) = JO + j(x), (4)

suppose JO known, and seek an estimate 3(x) of the difference J(x) - Jo. The

likelihood ratio of the numbers ni, i.e., the quotient of their joint probabil-

ities in the presence and absence of an image, is then

A~ni} 1 I(zc)]ni exp - a s [I(x i) - Io] (5)

i i

with

I(x) - Io = K(x - y) j() d2 y. (6)

We seek estimates of j(x) at sampling points xi, and put j(xi
) = Ei,

I(xi) = ni + Io0, approximating eq. (6) as

"i = Kij j, Kij = K(x
i

- xj) s. (7)

j

We assume that the true image J(x) is a homogeneous spatial Gaussian random

process with mean value Jo and covariance

E[j(xl) j(x2 )1 = p(xl - x2), (8)

and we form the matrix cp whose elements are

(ij = E[5i jj] = (xi - j), (9)
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and whose inverse is P = JIjij l. The joint probability density function of the

estimanda Ci is then

P({Ei}) = M exp -1 iji (10)

where M is a normalizing constant.

The maximum-likelihood estimate of the true image is given by the set of

values Si for which A{n
i
} p({Ei} ) is maximum. Equivalently, we maximize the

logarithm

In [A{ni} P({~i})] = F({i}) 

[ni in(l+-s) i + s i] + n M - 2 ij i j (11)

i i j

where the n
i
are expressed in terms of the Ej by eq. (7). Differentiating with

respect to Ej, we get

[I +[n
i
Kii - s ij] - 1jm m = 0 (12)

i m

Solving these equations for Em, we obtain

Em EZZ mj Kij I + n i

j i

= E Ki O + rli , (13)

i

where

Ki. = C mj Kij (14)

If we define

K'(x - y) = (x - u) K(u - y) d2u (15)

and if we suppose the data ni
are given by ni = z

i
s, where the z

i
can be con-

sidered as continuous random variables, z
i
= z(xi), with conditional mean
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E(zi) = a I((i),

we can convert eq. (13) into an integral equation,

(X) = K (f x Y) y a] d2 y (17)

I(y) = K(Y - ) j(w) d2w + IO. (18)

We can consider eq. (13) as a sampled version of eq. (17), with ni given in

terms of Cj by eq. (7), which is the sampled version of eq. (18). It is then

no longer necessary for the ni's to be integers. Equations (13) and (7) can

be solved by iteration.

The function F({1i}) in eq. (11) may have many minima, and there is a

danger that the iteration method may settle into the wrong one. It is there-

fore wise to start it as close to the absolute minimum as possible. One

convenient starting point is the set of ni obtained from the linear least-squares

estimate of the 5j's. Designating these by circumflexes, we put

ni = 2> Kii (i s (19)

J

where

i = i j
(nj - as I0)/as (20)

j
with Lij the least-squares estimating filter obtained by solving the Wiener

filtering equations*

L Kjm Kmi =m Lim Pmj, (21)

m m

mj = Km k Kjn kn + (Ios)6 j (22)

k,n

* C. W. Helstrom, "Image Restoration by the Method of Least Squares", J. Opt.
Soc. Am. vol. 57, 297-303 (March, 1967).
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The last term in eq. (22) represents the noise, which is assigned a mean-square

value equal to the variance of the numbers ni when the illuminance is Io. The

least-squares estimate will be most nearly optimum when the contrast is low, so

that I(x) - Io, and when the numbers ni of counts from each element of the

surface are large enough, ni >> 1, so that the Poisson distribution can be

approximated by a Gaussian with mean and variance given by eq. (3). Since

the matrices Kij, Pij, and Lij have the Toeplitz form, finite Fourier transforms

much simplify the computations involved in applying eqs. (19) - (22).

In the iterative solution negative values of JO + Sm may be obtained. It

is suggested that as these are unphysical, they be replaced by zero wherever

they occur. There will then be no danger that I(y) or Io + n
i
will vanish,

since the kernel K(u) and the matrix elements kij are non-negative. If necessary,

J0 + Em could be constrained in the iteration to be at least equal to a positive

number Jn, representing a uniform background illuminance.
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False-Alarm and Detection Probabilities

of Photoelectric Images

1. False-Alarm Probability by the Method of Steepest Descent

For the detection of an optical image providing an illuminance Ms(x) at

point x of a photosensitive surface, in the presence of a background illuminance

M0(x), the optimum statistic has been shown to be*

g = Ein Mx i)] TJ Ms(x) d2x, (1.1)

i

Ml(x) = MO(x) + Ms(x),

where xi is the point from which the i-th photoelectron is emitted and T is a

constant proportional to the quantum efficiency of the surface and such that

the expected number n of photoelectrons during the observation interval is, in

the presence of the image Ms(x),

E[nH1l] = T Ml(x) d2 x. (1.2)

Integrals are taken over the entire photosensitive surface, and the sum in

eq. (1.1) is taken over all the emitted photoelectrons.

Here Ho will denote the hypothesis that the image is absent, background

light alone being present; H1 denotes the hypothesis that the image sought is

present. The number n
i

of photoelectrons from any small area 6A at point xi

of the surface has a Poisson distribution with mean values

E[nilH0] = T Mo(Xi) 6A, (1.3)

E[ni[H 1] = T M1(Xi) 6A. (1.4)

The statistic g is compared with a decision level go; if g > go, the decision

* C. W. Helstrom, "The Detection and Resolution of Optical Signals", Trans.
IEEE, vol. IT-10, 275-287 (October, 1964).
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for hypothesis Hi--image present--is made. More generally Mj(x), j = 0, 1, is

an average of the illuminance Jj(x, v) as a function of frequency v, weighted

in accordance with the quantum efficiency n(v) of the photosensitive surface,

Mj(x) = fn(v) Jj(x, v) dv/hv, j = 0, 1,

where h is Planck's constant. Then T is the observation time.

The false-alarm probability Q0 is

Q0 = Pr{g > gOHO)], (1.5)

and the detection probability Qd is

Qd = Pr{g > g0 jH1}. (1.6)

The probability distributions of g under the two hypotheses are generally

difficult to calculate, and we shall endeavor to determine QO and Qd from the

Laplace transforms (moment-generating functions)

fj(s) = E[e-SglHj], j = 0, 1, (1.7)

of the distributions, which are given by

fj(s) = exp[pj(s)]

= expT Mj(x) M IIXJ -i d2 x + sJMs(X) d2x

j = o, 1; (1.8)

these are related by

fl(s) = fO(s - 1). (1.9)

The false-alarm and detection probabilities are then, by the inversion formula

for Laplace transforms,
c+io

Qo(go) 1 - f o(s) es g ds/2i (1.10)

,c-i
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and

Qd(go) = 1 1 - fl(s) e
s gO ds/27i. (1.11)Qd(gO9)i~ s

Jc-ioo

The contour of integration is a straight line parallel to and to the right of

the imaginary axis in the complex s-plane. We concentrate here on the false-

alarm probability; the technique for small values of the detection probability

Qd is quite similar.

Since the integrand of eq. (1.10) has no singularity at the origin--or

indeed anywhere in the complex plane, as an analysis of eq. (1.8) shows--we

can displace the contour to the left across the imaginary axis. Taking only

the first term,

C s

-
1

e
s g O ds/27i,

we can complete the contour around the left half-plane and show that this

integral vanishes. Hence the false-alarm probability is QO = q(g0), where

q(g) = - s-1 fo(s) e gs ds/27i, (1.12)

the contour C lying parallel to and to the left of the imaginary axis. We can

write this as

q(g) = - exp[p0 (s) + gs - in s] ds/2ri

C exp ~(s) ds/2ri, (1.13)

where

4(s) = Po(s) + gs - tn(-s) (1.14)

is a complex phase.

We apply the method of steepest descent by looking for the point s = so

at which the phase 0(s) is stationary, that is, where
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V'(s) = Po'(S) + g - s- 1 = 0, s = s o ,

denoting by primes differentiations with respect to s. The contour C is

shifted until it passes vertically through so. Expanding the phase i(s) in

a power series about so, we write the integrand in eq. (1.13) as

exp ¢(s) = exp [(so) + I (s - so)2 "(so)

+E (r!) (s - so)r (r) (sO)]

r=3

= exp[~(s0 ) + (s - s
0
)2 V"(so)]

x [1 + E (r!)- cr(s - s0)r], (1.16)

r=3

where (r)(s) = dr O(s)/dsr , and where the coefficients cr are derived from

the series expansion of the exponential function,

OD

exfp [E(r!)-
1 (s - sO)r (r)(so) = 1 + (r!)

-
1 cr(s - so) r .

Lr=3 r=3 (1.17)

Now we put for our variable of integration s = so + iy, and integrating term

by term on y we obtain

q(g) =- [2r D"(so)] exp 0(so)

x+ k (1.18)

In general, the series in brackets has only asymptotic validity and must be

cut off when the terms, which at first decrease, begin to increase. The second

derivative appearing here is, by eq. (1.15),

'"(so) = P0"(so) + s0 -2 . (1.19)

A computer program to generate the coefficients cr in eq. (1.17) from

these derivatives is simple to write. If in general we wish to take the

11
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exponential function of a power series,

E (r!) -
1 cr x exp E (s!)

-
1 bs xs )

r=O s=O

we can find the cr's by the recurrence relation

r-l

Cr = (r-l) br_s Cs, co = exp(bo),

s=O

which comes from Euler's formula for the (r-l)-th derivative of g'(x) exp g(x),

where g(x) is the power series in the exponential function. Here bo = b1 =

b2 = 0, br = D(r)(so), r ( 3.

(k)
The derivative ~p (s) of the logarithm of the characteristic function

appearing in (k)(so) can be written as

(k) = dk k FM: ( -)] s2x-
0(s) d P

0
(s)/ds

k
(-1) k O(X / [n(Ml) 1 d2 x() 0J) n~M-x)}]() lM((x)i ~'

(1.20)

They will usually have to be integrated numerically, and a computer routine

for generating all the necessary ones simultaneously will be expedient.

The approximation of the false-alarm probability Qo derived here is

closely related to the Chernoff bound, which is based on the inequality

exp sl(g - go) ' U(g - go), S1 > 0, (1.21)

where U is the unit step function.* Thus

Qo U(g - go) p0 (g) dg

L exp sl(g - go) po(g) dg = e- s go f0 (-s) (1.22)

* H. Chernoff, "A Measure of Asymptotic Efficiency for Tests of a Hypothesis
Based on the Sum of Observations", Ann. Math. Stat. vol. 23, 493-507
(December, 1952).
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The value of sl is then picked to minimize the bounding function. Putting

s = -sl, we must minimize

in fo(s) + sgO = PO(S) + sg0;

this requires

10'(s) + go = 0, (1.23)

which except for the term -s- l is the same as eq. (1.15). If so' < 0 is the

solution of eq. (1.23), the Chernoff bound asserts

Qo(go) ' exp[po(s0 ') + s0 1g0], (1.24)

and the exponent here is nearly equal to 4(so'). In fact, since eq. (1.22)

gives a bound for all positive values of sl, we can use instead of so' the

saddlepoint so obtained from eq. (1.15) and assert the upper bound

Qo (g) < exp[p0(so) + sog], (1.25)

which will be nearly as tight as that in eq. (1.24). The method of steepest

descent thus yields both an approximation and a bound to the false-alarm

probability.

In determining the detectability of optical images, one fixes a false-

alarm probability QO and from it determines the decision level go, which is

then used in calculating the detection probability Qd(go). It is therefore

necessary to solve the pair of equations (1.15) and (1.18) for the value of g

for which q(g) equals the pre-assigned false-alarm probability Qo. Here

Newton's method is most expedient. The function q(g) can, through eq. (1.15),

be treated as a function of so, which we designate by q(so). Then if sol is a

trial value of so, a new trial value is determined by the Newton equation

so = s + Q0 - q(so l) (1.26)

where the prime denotes differentiation with respect to so. In computing the
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derivative q'(s0), the series in the bracket in eq. (1.18) can be replaced by

1, and the factor in front of the exponential function can be treated as

constant; the rate of convergence to the solution will not be much affected.

Thus we can use

q'(so) = V'(s0) V(s0), (1.27)

where in the differentiation of P(s) of eq. (1.14) g must be treated as a

function of so,

'(s0 ) = 0o'(s0) + g + g'so - s0o = g's0 (1.28)

by eq. (1.15). On the other hand, eq. (1.15) gives

po"(so) + g' + s0- 2 = 0. (1.29)

Hence

V (s0 ) = - q(s0) [s0o0"(so) + s0o 1 ] (1.30)

is to be used in the denominator of the Newton formula, eq. (1.26).

In the beginning of the iterative calculation of so, it will suffice to

use for q(so) in eq. (1.26) the formula in eq. (1.18) with the bracketed series

set equal to 1. At the end, as many terms of the series should be included as

feasible. Rather than recalculating all the derivatives of 4(s) at each new

trial value of sO through eq. (1.20), it may be more expedient to determine

them from the Taylor series

Go

¢(s) = E (r!)- 1 (r)(sol) (s - s0 1 )r, (1.31)

r=O

where solis a suitable trial value at some stage of the calculation. The

coefficients in the bracketed series in eq. (1.18) will not need to be accurately

evaluated if the contribution of the variable terms of the series is small.
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2. The Probability of Detection

For calculating the probability Qd of detection, the method of steepest

descent will be useful only for weak images, for which Qd is not much larger

than Qo. The calculation will then be the same as what has just been described,

except that fl(s) = fo(s - 1) is used in place of fo(s). Eventually, as Qd

increases, the series in the bracket in eq. (1.18) will cease to converge

properly, and this method must be abandoned.

For detection probabilities near 1, which are of most interest, an

approximation method based on the analytical properties of fl(s) for large

real values of s may be fruitful. In this analysis one may as well drop the

constant last term

Y = T fMs(x) d2x (2.1)

from the statistic g in eq. (1.1), using instead the modified statistic

gl = g + y, (2.2)

which is compared with the decision level g1 0 = go + y. The moment-generating

function (m.g.f.) of gl is

fll(s) = E[exp(-sgl)lH
1
] = e-Y fl(s).

The probability density function (p.d.f.) of gl has a delta function at

the origin, for gl = 0 when no photoelectrons at all are emitted during the

observation interval. The probability of this event is

PI(0) = exp[- T M
l

(x) d2x] (2.3)

under hypothesis H1. The p.d.f. of gl, therefore, has the form

Pl(gl) = P 1(0) 6(gl) + pl'(gl). (2.4)
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The m.g.f. of the improper density function pl'(g) is

fi( s ) = Pl'(g) e-Sg dg =

P1(O) exp TMO(X) - d2X (2.5)

The behavior of pl'(g) for small values of g, which are of principal concern

when Qd is near 1, is related to the behavior of fi(s) for large, real values

of s. The detection probability is given by

g
1 0

Qd = 1 - Pi(O) - Pl'(g) dg (2.6)

and is therefore bounded above by 1 - P1(0) independently of the decision level

g10 = go + Y.

Let us consider, for example, a uniform background MO(x) = MO and a one-

dimensional image of the form

A c(x), 0 < x < a,
Ms(X, y) = (2.7)

O, x< 0, x > a,

with 9(O) = 0 and P(x) a monotone increasing function of x. The image covers

a range of width b in the y-direction. Since it is the behavior of Ms(x) in

the regions where it is nearly zero that matters in what follows, this form

is sufficiently general for the time being.

The crucial term in eq. (2.5) is the integral in the exponent, which we

write as

J(s) = TMo(x) [Mi(X)] d2 x = b MO [1 + X p(x)]-(s-i) dx,

A = A/Mo. (2.8)

We wish to determine the dependence of this integral, and hence also of fl(x),

Von s when s >> 1. Let us take as an example cP(x) = x , v > 0. Then we get
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a

J(s) = T b MO (1 + A xV)- (s- l ) dx

0

-T b M (1 + xV) ( s
- l ) dx; (2.9)

the discrepancy introduced by extending the integral decreases exponentially

with increasing s and can be neglected in this analysis. Evaluating the

integral we get

J(s) - T b Mo v- 1 -VJ yV (1 + y)(-1 dy

T b M0 v-1 X - v
-

1

r(v-1) r(s - 1 - v-1)/r(s - 1) (2.10)

in terms of the gamma-function r(x). If we now apply Stirling's asymptotic

formula for the gamma-function, we find for s >> 1

J(s) -- T b M0 v-1 _1 (v 1) s , s 1 . (2.11)l -- l >> (2.11)

Since J(s) << 1 when s >> 1, the m.g.f. fi(s) in eq. (2.5) is asymptotically

1 _1 ~-v- 1

fi(s) - P1(0) T b MO v-l X r(v-) S l s >> 1, (2.12)

and its inverse Laplace transform is, for small values of gl,

~-v -1 -1
Pl'(gl) = P1(0) T b MO v- 1 X-v gl · (2.13)

The probability of detection is therefore approximately

-1
Qd - 1 - P1(0) - P1(0) T b MO (g1 0/A) . (2.14)

We learn from this asymptotic analysis that the probability of detection

depends strongly, when near 1, on the manner in which the image decreases to

zero at its edge, which is reflected in the exponent v in eq. (2.9) and the

exponent v- 1 in eq. (2.14). If the image covers an infinite area, with Ms(x)

decreasing to zero as Ix| + , a different asymptotic analysis is required. There

will now in general be zero probability of zero counts, P1(0) = 0, and the

delta-function vanishes from the origin.
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As an example we take a circular Gaussian image,

Ms(x) = A exp(-1x12/a2), (2.15)

to be detected against a uniform background Mo. The logarithm of the m.g.f.

of gl becomes

Qn fll(s) = - T Mo [1 + A exp(-r2 /a2 )]

x {1 - [1 + X exp(-r2/a2)]-s rdrdp

(1 + X e- U ) [1 - (1 + X e ) ] du, (2.16)

where N = T Mo f a2 is the mean number of counts under hypothesis Ho from a

circle of radius a. In eq. (2.16) we make the substitution

v = Qn(l + X e- U ) (2.17)

to obtain*, with b = Qn(l + A),

b
ev U - e-sv)

O 1 - e v
Qn fll(s)

fo~~~~~~b
1 - e-v

-~ (eb -l+b)- f ev -(s-l)vb e~~~~-v - e(s-1)v e-v -- (s-1)v
= - N (e b _ 1 + b) - N - +Rde - ev + ~ e - e-N~~~~~~~~~~e ~~~~~dvf o-v -v

1- e 1- e

= - N [X + Qn(l + A)] - N [,(s - 1) + C] - N Zn(l - e ) - N AJA(s)

= - N [k + Qn X + p(s - 1) + C] - N AJk(s), (2.18)

where i(z)

is Euler's

is the logarithmic derivative of the gamma function, C = 0.577215

constant, and

* I.S. Gradshteyn and I. W. Ryzhik, Tables of Integrals, Series, and Products
(Academic Press, New York, 1965), §3.311, eq. (6), p. 304.
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) edv. (2.19)
1 - e-v

-b -v
Since over b < v < ~, 1 - e < 1 - e < 1, we can bound AJx(s) by

-(s-l)b e -(s-l)b

s-i < AJ (s) -1 e (2.20)
s - 1 1 - e (s - 1)

and we see that it decreases to zero exponentially as s + ~. Hence asymptotically

fll(s) - exp{- N [X + Qn X + C + p(s - 1)]}, s >> 1. (2.21)

By using the asymptotic expansion* of the function i(z),

*(z) ~ Qn z - - + O(z-2), R z >> 1, (2.22)

we obtain

3
fll(s) ~ exp{- N [A + C + in(Xs) - 2 + O(s-2)]}

= (is)-N e-N(X+C) [1 - 3N + 0(s-2)].

The p.d.f. of the statistic gl is therefore, for gl << N,

Pl (gl) iR-N -N(X+C) (N)- N- 1 3 + O(
p(g) - A e (N)- 1g [1 -g + O(g 12 )],

and the probability of detection is

- X-N e-N('+C) [r(& + 1)i-1 g N (l 3N
Qd - 1e N(+C) [r(N + 1)] g (1 2(N + 1) g 0 + (g1 ) )

where g1 0is the decision level on the statistic gl.

For detection probabilities in the intermediate range where neither of

the asymptotic methods just described will work, one can calculate the characteristic

function E(eiWg l
l
H 1) = fl(-iw) of the distribution and take its inverse Fourier

transform co

Pl(gl) = fl(-iw) e-iwg l dw/2

* A. Erdelyi et al., Higher Mathematical Functions (McGraw-Hill, New York,
1953), vol. 1, §1.18, eq. (7), p. 47.
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by one of the fast computer algorithms now available. This can then be inte-

grated numerically to give the detection probability. Alternatively, the Gram-

Charlier series can be tried, although it appears to be successful only for

unimodal distributions that closely resemble the Gaussian.*

* C. W. Helstrom, Statistical Theory of Signal Detection (Pergamon Press,
Oxford, 2nd ed., 1968), pp. 219-222.
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Quantum Detection Theory

An eighty-page review article on quantum detection theory has been

prepared for publication in Progress in Optics, E. Wolf, editor.

Quantum detection is a form of statistical hypothesis testing adapted

to quantum-mechanical rather than classical laws of statistics. It has been

formulated in terms of the conventional rules of quantum mechanics, one of

which is that only observables associated with commuting operators can be

measured simultaneously on the same system. The possibility of simultaneously

measuring noncommuting observables has been studied in recent years, and it

has been suggested that this would permit quantum receivers to attain lower

average error probabilities or Bayes costs. In a paper attached to this

report it is shown that no reduction in the minimum Bayes costs can be

achieved in this manner. Measuring noncommuting observables requires an auxiliary

apparatus that initially possesses no information about the state of the

quantum receiver, and there is no way in which introducing such an apparatus

can lead to a lower Bayes cost than the minimum attainable by measuring

commuting observables on the receiver alone. Quantum-mechanical Cramdr-Rao

bounds on the mean square errors of unbiased estimates of parameters of a

signal in a quantum receiver can likewise not be lowered by measuring noncom-

muting observables.
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Noncommuting Observables in

Quantum Detection and Estimation Theory

Carl W. Helstrom*
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Abstract

In quantum detection theory the optimum detection operators

must commute; admitting simultaneous approximate measurement of

noncommuting observables cannot yield a lower Bayes cost. The lower

bounds on mean square errors of parameter estimates predicted by

the quantum-mechanical Cramer-Rao inequality can also not be

reduced by such means.

* This research was supported by Grant NGL 05-009-079 from the

National Aeronautics and Space Administration.
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Quantum detection and estimation theory has been developed within the

conventional framework of quantum mechanics, one of the principal tenets of

which is that only observables associated with commuting operators can be

simultaneously measured on the same system.[1-3] It has been suggested that

this formulation is too restrictive, that noncommuting operators can be at

least approximately measured on the same system, and that to include this

possibility may permit more effective detection, as measured by a lower average

Bayes cost.[4,5] We wish to show that no such improvement can be expected.

The simultaneous measurement of noncommuting observables has been

treated by Gordon and Louisell.[6 ] In order to approximately measure certain

such observables on a quantum-mechanical system S, it is made to interact for

a time with a second system A, termed the apparatus. It was shown that a

suitably defined ideal measurement yielding approximate values of the noncom-

muting observables can be based on the outcome of measurements of commuting

observables on the apparatus A, or more generally on both S and A. What we

must therefore do is apply quantum detection theory--with its restriction to

commuting observables--to the combined system S + A.

Suppose we are to decide among M hypotheses H1, H2,..., HM. Under

hypothesis Hj the density operator for the combined system at time t is

S+A
pj (t) in the Schrbdinger picture. If at an earlier time to the density oper-

ator is S+A (t0 ), the two operators are related by[7 ]

SA (t) = U(t, to) pj A(t) U+(t, to), (1)

with

U(t, tO) = exp i Hdts'/i], (2)

0where H is the Hamiltonian operator for the combined system S + A and is
where H is the Hamiltonian operator for the combined system S + A and 1i is
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Planck's constant h/27. The operator U is unitary; that is, with U+ its

Hermitian adjoint, UU equals the identity operator 1.

Let {Hj} be a set of commuting projection operators forming an M-fold

resolution of the identity,

M

nj = 1. (3)
j=1

On the combination S + A we are to measure these M projection operators at time

t, and if the k-th yields the value 1, hypothesis Hk is selected as true.[1]

The average cost is then

M M

C= zL j Cij Tr[p+A(t) Hi], (4)

i=l j=l

where 5j is the prior probability of hypothesis Hj and Cij is the cost of

choosing Hi when Hj is true. Let {Jj(t)} be the projection operators that

minimize C when the system S + A is observed at time t; we call these optimum.

Then by (1) the operators

nj(to) = U+(t, to) nj(t) U(t, to) (5)

will minimize C when S + A is observed at time to. Because of the unitarity

of U(t, to), the set {Ij(to)} also forms an M-fold resolution of the identity

into commuting projection operators, and the nj(to) are optimum at time t0.

Since the minimization is carried out over all possible M-fold resolutions of

identity, the minimum Bayes cost Cmin must be independent of the observation

time t.

Now let us roll time back to an epoch to before the system S has come

into contact with the apparatus A. In the Schrodinger picture this amounts to

applying the inverse unitary transformation U +(t, to) to the state vectors of

the combined system S + A. Because S and A are independent at this time to,
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S+A
the density operators pS must now have the factored form

pj (to) = oj (t0) p (to), j = 1, 2,...M. (6)

Furthermore, as the apparatus A before the interaction has no information

about which hypothesis is true, p (to) in (6) must be independent of j.

The Bayes cost is now

M M

C = Tr A(to) ZEZ j Ci j pj(to) II (7)

i=l j=l

Since S and A are completely uncoupled, and the state of A is independent

of which hypothesis H. is true, there is nothing to be gained by observing A.

The optimum projection operators Hi(t
O

) factor as HiS(to) 1A, where 1 is the

identity operator for the apparatus A, and the set {njS(to)} forms an M-fold

resolution of the identity 1S for the system S, minimizing the Bayes cost

M M

CS = E ij Cij Tr[pjS (to) i](8)
i=l j=l

Since Tr[pA 1A] = 1, the minimum value of CS is also the minimum value of C

in (7) and equals the time-independent minimum Bayes cost Cmin. The decision

among the M hypotheses made at time to is based entirely on the measurement

of commuting observables on system S.

Similar considerations apply to estimating the m parameters e =

(811 82,... 8 m) of the density operator pS(0) of a quantum-mechanical system

S. A version of the Cramer-Rao inequality sets lower bounds to mean square

errors of unbiased estimates of 081, 02,..., m . [3 Let Xj be an operator

whose measurement on S yields an unbiased estimate ej of the j-th parameter;

8j must be an eigenvalue of Xj. Although in order to be measured simultaneously

on the same system the operators Xj must commute, the analysis leading to the

lower bounds given in [3] does not require commutativity of the operators Xj.
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For the class of commuting operators yielding unbiased estimates of the para-

meters 0 there will exist lower bounds on the mean square errors, and those will

be greater than or at least equal to the bounds derived in [3].

Again including the possibility of measuring noncommuting observables

cannot lead to lower bounds smaller than those in [3]. In order to measure

such operators even approximately, a measuring apparatus A must be allowed to

interact with the system S, and according to Gordon and Louisell's treatment

of the process, commuting operators will at the end be measured on the combined

system S + A.[ 6
] In the Schrodinger picture the density operator p (e, t)

for S + A will have a time dependence similar to that in (1).

Referring to (7) of [3] we see that the symmetrized logarithmic deriva-

tives (SLD) Lj(t) appropriate for determining the Cram6r-Rao lower bounds when

the measurements of Xj are made at time t are related to those appropriate for

measurements made at to by

Lj(t) = U(t, to) Lj(to) U +(t, to). (9)

Then (13) of [3] shows that the matrix A that sets the lower bounds is indepen-

dent of the time t of observation, again because of the unitarity of the

operator U(t, to).

Once more we move back to an epoch to before the system and the apparatus

have interacted. The density operator p (e, to) factors as p S(, to) p (t0 ),

where the density operator p (to) of the apparatus A is independent of the

estimanda e. The SLD operators for calculating the lower bounds are now the

solutions of the operator equations

SoS t0)1 SS s SS
, S(e, t

O
)/ Ln = Ln [

S
(L, to)], (10)

and they act only on system S, commuting with p and all other operators on the

apparatus A. When taking the trace over the states of A to form the elements
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of the matrix A, the density operator pA is replaced by 1, and the lower

bounds depend only on pS(0, to). Thus the apparatus A cannot help estimate the

parameters 0 of S with smaller mean square errors than the lower bounds cal-

culated by the quantum-mechanical Cramer-Rao inequality as applied to the

density operator of system S alone.

In [3, p. 238] lower bounds were calculated for unbiased estimates Mx and

my of the components of the complex amplitude w = mx + imy of a simple harmonic

oscillator, which might represent a mode of the field in an ideal receiver in

the presence of thermal noise. Those bounds are

Var x >1 1 1
Var fiiVar y > 1 (N + 1)

where N is the mean number of noise photons. The noncommutativity of the SLD's

Lx and Ly used to derive these bounds does not invalidate them. It can be

shown that if the mode is coupled with an ideal amplifier whose gain is high

enough to raise the oscillator variables to the classical domain where they

commute, error variances

Var mx = Varmy = (N + 1)

can be attained [8]. It is unknown whether commuting operators can be found

whose measurement will yield unbiased estimates mx and my with variances lying

between - (N + 2) and (N + 1).

The measurements we need to make on a quantum-mechanical system S for

testing hypotheses or estimating parameters will always have to be effected by

means of an auxiliary apparatus A, and this apparatus, subject to thermal and

quantum fluctuations of its own, will ordinarily introduce additional random

uncertainties. Each measurement procedure will have to be analyzed to determine

what error costs it entails. Detection theory and estimation theory seek

6



lower bounds on these costs, and in doing so they minimize with respect to the

entire class of possible detection or estimation operators that can be applied

to the system. The resulting bounds are independent of the time of observation,

and they cannot be reduced by using any auxiliary apparatus that initially

posseses no information about the state of the system.
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Linear Restoration of Incoherently

Radiating Objects

Carl W. Helstrom*

Department of Applied Physics and Information Science

Univer;:ity of California, San Diego

La Jolla, California 92037

ABSTRACT

Light from an incoherently radiating object and background

light are focused onto a photosensitive mosaic, the currents from

whose elements constitute the data on which is based a least-

squares linear estimate of the radiance at points in the object.

By comparison of the mean square error with that given by Wiener

filtering theory, the equivalent noise spectral density for use in

the latter is shown to consist of a shot-noise term and a term due

to the random fluctuations of the incoherent light; the former

predominates under most circumstances. Turbulent distortion of

the image after passage of the rays through a random phase screen

is also treated from this standpoint.
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The restoration of degraded images is often based on a linear model of

image formation: a two-dimensional object function is pictured as having

passed through a spatial filter, to whose output spatial random noise has

1-7
been added; the sum of these constitutes the observed data. In the

approach known as Wiener filtering, the data are passed through a linear

spatial filter whose transfer function is designed to reproduce the original

2
object function within the smallest possible mean square error. In

actuality, most objects radiate incoherently, and it is not the light field

they create that is wanted; that field is a complex spatio-temporal gaussian

random process, whose instantaneous values are of no interest. Rather the

observer wants to know the distribution of radiance across the object, and

the radiance is related to the mutual coherence function, which is the statis-

tical average of a quadratic functional of the light field. Furthermore, the

linear filtering theory does not explicitly distinguish the two basic types

of noise, that due to the inherent fluctuations of the light fields of object

and background, and that associated with the process of recording the light.

Instead it makes certain assumptions about the spatial spectrum of the noise

and requires its strength to be mesured separately. This theory is inadequate

to determine the basic limitations set by nature on the restorability of

degraded images.

A previous paper showed how the statistical properties of the information-

bearing quadratic functional of the light field modify the usual Shannon

formula for the information transfer from an incoherently radiating object.8

Here we shall treat the linear processing of the image illuminance that seeks

an estimate of the radiance distribution in a distant object plane. In order

to incorporate the random behavior of the recording medium, we shall assume

that the light from the object is focused on a photosensitive surface divided

2



like a mosaic into many small, contiguous regions, the photoelectronic currents

from each of which make up the observed data. These data are combined

linearly to provide estimates of the radiance at discrete points of the object

plane.

Only spatial filtering of this kind will be considered. Temporal

filtering for reducing the estimation error on the basis of color differences

between object and background will be disregarded. The object light and the

background light will be assumed to pass through a narrowband filter, over

whose passband both have uniform spectral densities.

We begin by working out the means and covariances of the photocurrents

in terms of the mutual coherence function of the incident light, which in

turn is related to the radiance distribution of the object plane, our estimandum,

and to the background radiance. The object radiance is considered as one of

an ensemble of spatial random processes, which form the class of objects to be

examined. The squared error of the radiance estimate is averaged over this

ensemble of object processes, as well as with respect to the statistical dis-

tributions of the light fields and the photoelectrons. The spatial filtering

that minimizes the resultant mean square error is then easily determined.

The final expressions for the mean square error will be found to have

the same form as those derived from the Wiener filtering theory, and by

comparing them we can determine the spatial spectral density that must be

assigned to the random noise in utilizing the Wiener technique. This equi-

valent noise density is the sum of a constant term due to the randomness of

the photoelectron emissions ("shot noise") and a spatially variable term

arising from the fluctuations of the light fields produced by object and

background. Finally, since removing distortion by atmospheric turbulence is

3



a primary goal of image restoration, the effect of a simple kind of turbulence--

the random phase screen--will also be analyzed in this way.
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1. The Photocurrents

The sysLt n to be analyzed is shown in Fig. 1. The object plane O emits

incoherent light, which is received at the aperture A of an observing optical

instrument. A narrowband filter, not shown, cuts out background light outside

the temporal spectrum of the object light. The aperture A contains a lens

to focus the light on the image plane I, which consists of a mosaic of isolated,

but close photosensitive spots of area s. The light ejects photoelectrons from

these spots, and the resulting integrated currents Im are measured and consti-

tute the data on which estimates of the object radiance are to be based. The

spots are so small and so close together that ultimately we shall treat them

as infinitesimal.

The object plane is likewise sampled at a dense set of points uk =

(ukx, Uky), and the radiance B(uk) is estimated as a linear combination of

the integrated currents Im,

B(uk) => LkmIm + const., (1.1)

m

where the weights Lkm introduced by the processing matrix L are selected to

minimize a mean square error; the constant has a known value.

Dividing time into small intervals At, we write the current from the m-th

spot as

Im (t) = nm(ti) f(t - ti), (1.2)

where nm(ti) is the number of photoelectrons emitted during the i-th interval,

and f(t) is the current pulse resulting from each emission; At is much smaller

than the duration of f(t). For a given light field at the image plane, the

numbers nm(t
i
) are random variables with a Poisson distribution, and they are
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statistically independent from one spot to another and from one interval to

another.

The object, aperture, and image planes are assumed to be so far apart,

and the aperture so small, that all light rays can be considered paraxial. If

for simplicity we suppose the light linearly polarized, it suffices to use a

scalar theory, and we represent the field at point x of the image plane by the

-iptanalytic signal p(x, t) e , where Q = 2wc/X is its central angular frequency,

A is its wave' ngth, and '(x, t) is the complex envelope. The conditional

expected value of the number n m(ti) is given in terms of this field by

U[nm(ti)] =2 as2 I(xm, ti)12 At, (1.3)

where a = n/liQ is the quantum efficiency n of the surface divided by the

quantum -riQ of energy of the light. The conditional mean of the current Im

from the spot centered at xm is then

E(Im) = s (m, ti ) 2 f(t - ti) At

i

as (Xm, T)1 2 f(t - T) dT (1.4)

when we pass to the limit At - 0.

The current from each spot will be integrated by a filter with a long

time constant T in order to determine the total charge ejected by the light

during the observation interval. This filter, acting on each component pulse

f(t) of the current, replaces it in Eq. (1.2) by a new pulse whose duration is

of the order of the integration time T. We can therefore regard the data as

represented by Im(t) of Eq. (1.2), but with a pulse shape f(t) that is positive

and of duration T. If we suppose f(O) = max f(t), a useful definition of the
t

duration T is

6



T = [f(t)]2 dt/[f(0)]2; (1.5)

co

T is in effect the observation time. Without loss of generality we put f(O) = 1.

In order to work out the mean square error of our estimate, we shall

need the covariance of the currents from two different spots. It can be evalu-

ated as in the semi-classical analysis of the Hanbury-Brown-Twiss effect,9'
1
0

which utilizes the equality of the variance of the Poisson distribution of

nm(ti) with the mean value given in Eq. (1.4), and which also involves taking

the expected value of a product of four correlated complex gaussian variables

by the formula 11

(<12*'3P4* ) = (W1X2*)(<3P4*> + (<1W4' ><42*' 3)-

The resulting covariance is

{Im(t), Ip(t)} = (Im(t) Ip(t)) - (Im(t))(Ip(t)> =

a2s2 YI(xm, Xp) 12 f IX(T1 - T2) 1 f(t - T1 ) f(t - T2 ) dTldT2

+ as TI(Xm, Xm ) mp [f(t - T)]
2 dT, (1.6)

co

where 6 mp is the Kronecker delta and TI(x1, x2 ) is the spatial part of the

mutual coherence function of the light field at the image plane,

-W(xl1 tl) p*(x2, t2 )) = YI(x1, x2 ) X(tl - t2) (1.7)

The temporal part X(t1 - t2 ) is the Fourier transform of the absolute square

X(w) of the transfer function of the input filter and is so normalized that

X(O) = 1,

X(T) = X(w) dw/27r.

Here angular frequency w is defined with respect to Q as origin. The angular
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brackets in Eq. (1.6) refer to averages with respect to the distributions of

both the light fields and the photoelectron emissions.

If we define the bandwidth W of the filtered light as

W = IX(O)I2/J IX(T)w)1 2 dT=/2f,i00 (1.8)
and if we assume WT >> 1, as is normal in practice, the double integral in

Eq. (1.6) can be simplified, and the covariance of the currents becomes

{Im(t), Ip(t)} = a2 s2 [TI(xm, Xp)12 T/W + as yi(xm, xm) 6mp T.(1.9)

In terms of the mutual coherence function, the mean value of the current from

the m-th spot is, by Eq. (1.4),

(Im(t)) = as YI(xm, Xm) pT, (1.10)

where p is a positive constant defined by

P = T-1 f f(t) dt/f(O). (1.11)

For rectangular current pulses p = 1.

We must now evaluate the spatial coherence function YI(xl, x2) in terms

of the radiance distribution B(u) of the object plane and the spectral density

N of the background light.
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2. The Mutual Coherence Function

The field jI(x, t) at point x of the image plane is given in terms of

the aperture field pa(r, t) by

*I(x, t) = S(x, r) 'a(r, t) d2 r, (2.1)

where Sl(x, r) is the point-spread function (psf) between aperture and image

plane. In the paraxial approximation

Sl(x, r) = i(R 1) -I exp [ikR 1
+ 2 11 r - x 2 2Fik r2

where k = Q/c = 2 f/X is the propagation constant and R1 is the distance from

the aperture to the image plane. The last term in the exponent is the phase

shift introduced by the lens, whose focal length is F and which focuses the

object plane at distance R onto the image plane,

F- 1 = R- 1 + R-l1 . (2.2)

The aperture field consists of two statistically independent parts, the

light from the object and the background light,

'a(r, t) = S2(r, u) ,o(u, t) d2u + 4n(r, t), (2.3)

where io(u, t) is the field at point u of the object plane, S2(r, u) is the

psf between object and aperture, and Pn(r, t) is the background component of

the aperture field. In the paraxial approximation

S2(r, u) = i(XR)- 1 exp ikR + 2 u - rij. (2.4)

As the background light is spatially incoherent, its mutual coherence

function after filtering has the form

-n(rl, t1) n*(r2, t2)) = N 6(r - r2) X(tl - t2), (2.5)2 29 2)) - Ed X~~~~~~~~~(t-t2.),
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where 6(r) is the two-dimensional delta-function. The object light is spatially

incoherent at the object plane, where its mutual coherence function is

o (U1 , t1) Po*(U2 , t2)) = (X2 /47) B(U1 ) 6 (U - ) X(tI - t2 )

(2.6)

if we suppose the temporal filtering already applied. Here B(u) is the radiance

of the object plane integrated over the passband of our input filter. It is

decomposed as

B(u) = B0 + b(u) (2.7)

into a known average level Bo and a deviation b(u). It is b(u) that the

system is to estimate; it represents the scene of interest.

When we combine all these equations, we find for the spatial coherence

function of the light at the image plane

TI(Xl, x2) = (4TR1 2 )-1 exp [ik(x1 2 - x2 2 )/2R1]

x Bot 0 exp [ikr.(x2 - Xl)/R
1
] d2 r +

(XRY)-2 JfJ b(u) exp R- ' x-(-2 - )

x d2 ud2rld2r2 I. (2.8)

where
Bo ' = Bo + 4rN/X2 (2.9)

and A and 0 indicate integrations over the aperture and the object planes,

respectively. The uniform radiance level Bo adds to the background density,

and we merge the two into a single uniform radiance level B0' In our discussions

4wN/A2 will be neglected in comparison with BO; it can easily be restored by

using Eq. (2.9).

It is convenient to rescale the coordinates in the image plane so that

the geometrical image of a point u in the object plane also has coordinates u;
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we put

v = - R x/R1 (2.10)

and write the spatial coherence function as

TYI(v, v2) = A(4rR12 )- l exp [ikRl(vy 2 - v2 2 )/2R0 2 ]

x B (v - 2) + (AR)-2 A b(u) J(v- u)J*(v- U) d2Yu,

where (2.11)

J(u) = A-1 J IA(r) exp (iku-r/R) d2 r (2.12)

is the Fourier transform of the indicator function of the aperture, defined

as

IA(r) = 1, r ( A; IA(r) = 0, r g A.

11
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3. The Radiance Estimate

If we now use Eqs. (1.10) and (2.11) to evaluate the expected value of

the current from the m-th spot on the image plane, we obtain

(Im) = Io + p Cls b(u) 1I6(vm - u)12 d2 u, (3.1)

Io = apTs A Bo'(4nR1
2 )- 1,

C1 = aT A2 (XR)-2(4¶R12)-
1
, (3.2)

where v is the scaled coordinate vector of the center of the m-th spot.

Except for the known constant Io, the mean value of Im is proportional to the

weighted integral of the true radiance deviation b(u) over the neighborhood of

the object point vm . The kernel IJ(Yv - u)1 2 is the incoherent point-spread

function (psf); its diameter is of the order of the conventional resolution

interval 6 = XR/a, where a is the radius of the aperture, taken as circular.

If b(u) varies only slightly over a distance 6, Im - Io itself provides

a good estimate of b(vm); the linear processing of the currents I
m

is intended

to improve that estimate, and the new estimate of the radiance deviation at

point um of the object plane is taken as

b(um) = E Lmn(In - IO),

n

with the coefficients L to be determined as shown hereafter.
mn

The expected value of the radiance estimate b(ym) can be obtained from

Eqs. (3.1) and (3.3),

(b(um)) = P Cls Lmn fb(v) (um - v)2 d2 v, (3.4)

n

where s is the area of an element of the image plane. We now assume that s is

12



so small, and the spots so close together, that this summation can be approxi-

mated by an integral,

((u)>) = p CL(R1/R)2 tL(u, w) jIj( - y)12 b(v) d2 wd2 v, (3.5)

where we introduce a smooth weighting function L(u, w) whose values at the

sampling points are L(um, un) = Lmn. The factor (R1/R)2 arises from the

scaling adopted in Eq. (2.10).

13



4. The Mean Square Error

Any system for image restoration must be evaluated with respect to a

definite class of objects. The statistical properties assigned to the class

reflect the nature of the objects whose images the system is designed to

restore. Here the objects are regarded as having radiance distributions

B(u) = Bo + b(u) that are homogeneous two-dimensional random processes of

mean value

E B(u) = B0 (4.1)

and autocovariance function

E[b(u) b(v)] = y(u - v), o 2 = ?(o). (4.2)

The width of p(u) as a function of u'1 represents the size of typical details

in the object plane; the ratio oB2/BO2 specifies the mean square contrast.

The Fourier transform of P(u) provides the distribution of spatial frequencies

in objects of the class. Objects in which sharp edges predominate, for

example, will have spatial spectra decreasing slowly at high spatial frequencies.

As the actual object radiance is unknown a priori, the system can be

designed only to attain a certain average performance with respect to the given

class of objects. If it does so, it can be expected to restore efficiently

most objects of the class. The measure of performance adopted here is the

common mean square error

= E([b(u) - b(u)) (4.3)

in which the angular brackets denote, as before, averages over the distributions

of the fields and the photoelectron emissions, and the symbol E now denotes an

expected value over the class of anticipated objects. The set of coefficients

14



Lmn, or the weighting function L(u, v) of which they are samples, is to be

chosen to minimize e.

The mean square error can be written as

& = E([b(u) - (b(u)> + (b(u)) - b(u)]2 )

E Var b(u) + E[(b(u)) - b(u)]2, (4.4)

where Var stands for the variance with respect to the field and photoelectron

distributions. From Eqs. (3.3) and (1.9)

Var b(um) = Lmn Lmp {In, Ip}
n p

Z Lmn Lmp {a2s21Ii(Xn, xp) 2 T/W +
n p

E mn aS YI(Xn Xn) T 

n

a2(T/W)(R1/R)4J'L(Um, y ) L(um, V2
)

II(YV1, V2)2 d2 Vld2 V2

aT(Ri/R)2 [L(um, v)]2 yI(v, v) d2 v (4.5)

in the limit s + 0, where YI(vl, v2) is the spatial coherence function given

by Eq. (2.11). Substituting from Eqs. (3.5) and (4.5) into Eq. (4.3), using

Eq. (2.11), and averaging by means of Eq. (4.2) over the ensemble of radiance

deviations b(u), we obtain for the mean square error

' = C2 2 (WT)-1 (XR)4 A-2/jL(u, v) L(u , v B2j() y2)2 +

A2(XR)-4fJ P(Ul - u 2) (Y1 - 1u) '(u- 2) J(vY 2 - u2) (u2 - Y1 )

x d2Uld2u2 d2v d2 v2

+ C2 Bo'(XR)2 A-1 fJL(u, V)12 d2 v +
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P2C2 f L(u, v) L(u, v2) 1,(y1 - 1)12 i(v2 - w2)12 (w1 - 2)

x d2 d2 v d2w d2w

-2 p C2 L(u, y) v i(v -1)I2 P(w - u) d2 vd2 w + P(0), (4.6)

with C2 = C1(R 1/R)2 .

Because of the homogeneity of the object and of the optical imaging in

our paraxial approximation, the weighting function L(u, v) that minimizes &

will depend on u and v only through u - v. We introduce its spatial Fourier

transform A(r), defined by

L(u, v) = (XR)-4A C-1 A(r) exp [ikr-(u - v)/R] d2 r; (4.7)

the transform variable r is scaled so that it matches the coordinates in the

aperture plane. Similarly we define the spatial spectral density of the

radiance deviation b(u) through the Fourier integral

c(u) = J(r) exp (iku-r/R) d2 r. (4.8)

In terms of these the mean square error can be written as

= (WT)-1 JIA(E)12 [BO2 I(2)(r) +JIA)(r, s) D(s) d2s d2 r/A +

C fjA(r)2 d 2 r/A + IpA(r) I(2)() - 112 -(r) d2 r, (4.9)

where C = 47r B0 '/A2 aT,

I2) () = IA() IA( - r) d2/A(4.10)

is the self-convolution of the indicator function of the aperture, and

I4) (r, s) = IA( ) IA(t + r) IA(t + s) IA(t + r + s) d2 t/A (4.11)
Ais a quadruple convolution. For a circular aperture of radius a, both I

is a quadruple convolution. For a circular aperture of radius a, both I (r)
A 
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and IA (r, s) vanish outside a circle of radius 2a. Their maximum values occur at

r = s = 0 and equal 1. The region where I 2)(r) ¢ 0 is called the convolved aperture.

The expression in Eq. (4.9) has the same form as the mean square error in

Wiener filtering; O(r) is the object spectral density, p IA2)(r) the effective

optical transfer function, and

%n(r) = 4T B0 '/X2 aTA +

A 1 (WT)-1 [B2 I(2) (r) + JI4)(r, s) 4(s) d2 (4.12)

the equivalent spatial spectral density of the noise. In on(r) the first term

represents the shot noise due to the photoelectrons, and the second arises from

the fluctuations of the light field. Thus the mean square error is

= fJA(r)12 Dn(r) d2 + A(r) 2) - 2 () d2r, (4.13)

in which the first integral gives the contribution of the noise and the second

represents the mean square bias of the estimate, averaged over the ensemble of

radiance distributions.

The filter transfer function A(r) that minimizes the mean square error

is determined as previously described.2 As usual in linear processing, spatial

frequencies in the object that when multiplied by AR fall outside the convolved aper-

ture are not restored to the image. When the aperture is so large that diffraction

can be neglected, only the shot noise and the fluctuations of the light field

prevent perfect image restoration. The equivalent noise density is then constant,

and the minimum mean square error is

min =/[1 + H D(r)/O(O)- 1 0(r) d2 r, (4.14)

where the effective signal-to-noise ratio (snr) H is defined by

H = A p2 (0O)/ n(0) =
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p2 WT (oB2/B02 ) (oB//r) [1 + B2 + -BrW (4.15)
[ r B__2 B'

with dir = (AR)2 /A the area of a resolution element in the object plane and

o= aB -2 c(u) d2 u

an area of the order of that of typical details in the object; a 2/B12 is the

mean square contrast of the object, with aB2 = P(O). Table 1 gives the minimum

relative mean square error for some simple object spectra. The more high

frequencies attributed to the objects by d(r), the more slowly i . decreases

with increasing snr H.

The shot noise predominates over the effect of the field fluctuations

when

rB = X 2 B0 'a/4TW = X 2Bo'n/4rWfiQ << 1,

where n is the quantum efficiency of the photosensitive surface. If we con-

sider a scene illuminated by moonlight on a clear night, we can put for BO'/W

the value 1.6 x 10- 3 watt.m-2i- 1 at X = 5150 M.U.1 2 This ratio rB then takes

the value 0.8 x 10- 1 3 n, which must be further diminished by the mean

reflectivity of the scene. For illumination by full sunlight at the same

wavelength the ratio rB is larger than this by a factor of about 106. The

quantum nature of light and its interaction with the recording mediumis thus

under most circumstances the principal hindrance to perfect image restoration.
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5. Phase-Screen Turbulence

When the object light passes through a turbulent medium, the point-

spread function (psf) S2(r, u) appearing in Eq. (2.3) becomes a randomly time-

varying function whose statistical properties derive from those of the

turbulence. In order to assess the effect of the resulting distortion on the

restorability of the received image, we take a simple model of the medium for

which the average psf is readily calculated.

The turbulence is supposed to be confined to a thin, homogeneous planar

region between object and aperture, and its only effect is postulated as the

introduction of random phase shifts into the rays passing through it. This

is called the random pha:4e screen. As a result the spatial coherence function

of the object light at the i erture acquires a factor1 3

p(r) = exp [- D(R'r/R)), (5.1)

where D(v) is the structure function of the random phase shifts 0(u) introduced

at points u of the screen,

D(v) = 2[0(0) - O(v)],

O(v) = E[e(u) e(u + v)].

Here R' is the distance from object to phase screen.

When in our image-processing system the integration time T is much

longer than the time constant Te of the phase fluctuations, which in turn is

much greater than the reciprocal bandwidth W - 1 of the received and filtered

light, the factor p(r) simply multiplies the optical transfer function p 1(2)(r)
A

in the last integral of Eq. (4.9). If there are many independent phase

screens lying between object and aperture and separated by many wavelengths

of the light, the exponent in Eq. (5.1) contains a sum of structure functions
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for the several screens; and if each screen introduces only a small, random

phase shift, a good approximation to the net effect assigns to the factor

p(r) a gaussian form,

p(r) = exp (-r2/4L2 ), (5.2)

where L is a characteristic length for the turbulence, whose distortions are

the more severe, the smaller L is1 3 Alternatively, this gaussian form can be

taken as an approximation for a single phase screen. It corresponds to the

light from each point of the object arriving with plane wavefronts tilted at

random angles, which have a gaussian distribution about perpendicularity to

the optical axis.

The turbulence also affects the term in the mean square error, Eq. (4.9),

containing the quadruple convolution I(4)(r, s). This term arises from the

product of four psf's

S2(r1, v1) S2*(r2 , Y1 ) S2 *(r3, v2 ) S2 (r4, Y2)

occurring in the variance Var 2(u) of the estimate. It must now be averaged

over the ensemble of randomly fluctuating psf's S2 resulting from the turbu-

lence. A tedious calculation making use of the inequalities W-
1 << To << T

replaces IA (r, s) by a new function IA )(r, s) involving the structure

function of the random phase shifts,

IA )(r, s) = (R)- 2 A-1 .J R( S R t)

x exp (R'- r - ~(r - r - ) IA(r ) IA(r2) IA(rl + r) I (r + r)R R' 2 A A2]A

x d2r d2 r d2 t, (5.3)
1 2 -

where R" is the distance from phase screen to aperture, R = R' + R", and

,r(p, q) = exp {-[D(p) + D(q) - 2 D(q - p) - D(q + p)]}. (5.4)
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For a quadratic approximation to the structure function as in Eq. (5.2),

D(p) _ p2, . E 1 and I(e)(r s) = I(4)(r, s) of Eq. (4.11). Furthermore,
A _

when the aperture is so large that diffraction imposes no significant limita-

tions,

I G)(0 , s) - 5(_ i r, _ ). (5.5)

The function 5 can be shown to be at most equal to 1. Here we shall for

simplicity set r : = 1 and IA()(r, s) = I 4)(r, s), thus replacing the integral

involving this kernel with its upper bound; the term involved is usually much

smaller than the shot-noise term anyhow.

We now assume that the diameter of the aperture is so much greater

than the distortion length L that we can neglect diffraction of the image.

The minimum mean square error is then, after suitable modification of Eq.

(4.9) and subsequ:nt equations,

lmin J= [1 + Hlp(r)12 D(r)/(0O)]-I D(r) d2 r, (5.6)

where H is the snr defined in Eq. (4.15). As an example we assign to the

spectral density of the radiance distribution the constant bandlimited form

(r) = aB 2 /7Tc 2 , <rl E,

= 0, I > I> (5.7)

where with A the diameter of a typical detail in the object, c = XR/A. For

the optical transfer function p(r) we use the gaussian form in Eq. (4.2). We

then find for the minimum relative mean square error

min /aB2 = 2(L/E)2 Qn {[H + exp (c2 /2L2 )]/(H + 1)},

which has been plotted versus H in Fig. 2 for various values of c/L = g/A,

where Q is the scale of the phase-screen turbulence projected onto the object
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plane, 9 = XR/L.

For comparison we present in Fig. 3 the minimum relative mean square

error for the object spectral density

p(r) = ~(Q) 4 ( 2 + c2)-2, (5.8)

which extends to high spatial frequencies. The ratio min /oB2, which was.

calculated numerically, decreases with H much more slowly than for the spectral

density in Eq. (5.7).
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Table 1

Minimum Relative Mean Square Error

Object Spectral Density

P(0) = 4(9), Irn < C

= 0, Irn > £

D(r) = D(0) exp (-r2/2e2 )

D(r) = (0Q) E4 (r2 + E2)-2

m(rn) = (Q)) n (In + En)- l, n > 2

minf B

(1 + H) -
1

H- 1 kn (1 + H)

H-( tan-1 (Hi)

(1 + H)- ( n - 2 ) / n
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Figure Captions

Fig. 1. The object and the image-processing system: O = object plane,

A = aperture plane, I = image plane. A narrowband temporal

filter for object and background light is not shown.

Fig. 2. Minimum relative mean square erro.: for restoring image dis-

torted by a random phase screen. Object spectral density

~(r) = ~(Q), Irl < c; c(r) = 0, Irl > E. Curves are indexed

by the value of E/L = R/A.

Fig. 3 Minimum relative mean square error for restoring image dis-

torted by a random phase screen. Object spectral density

~(r) = (0O) E4 (r2 + e2)-2. Curves are indexed by the value of

s/L = Z/A.
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